<span style='color:red'>Renesas</span>丨Silicon to Software: RoX AI Studio Advances Software-Defined Vehicle Design
  Software-defined vehicles (SDV) are upending traditional automotive design. While vehicle development is still highly iterative, the industry is in the throes of a historic transformation where manufacturers are compressing once-sequential hardware-to-software design cycles into more efficient software-first design flows.  This so-called shift-left approach is exemplified by Renesas' adoption of digital tools and AI models as part of a broader digitalization and software strategy aimed at accelerating design and innovation, while simultaneously optimizing R&D efficiency. In the automotive sector, the evolution is driven by practical considerations given that a typical vehicle now embeds more than 100 million lines of code. Heavier software dependence requires continuous updating and deployment, multi-supplier integration, design validation at scale, and reflects an ecosystem where OEMs insource more software and chipmakers ship platforms, not parts. Renesas anticipated these changes with the scalable R-Car hardware and software development platform. R-Car supports the transition of E/E designs to more central processing architectures, including advanced driver assistance systems (ADAS) and autonomous vehicle design. Last year, we added R-Car Open Access (RoX), an extended platform for SDVs that provides a pre-integrated, out-of-the-box environment with hardware, operating systems, software stacks, and tools to accelerate next-generation vehicle development.  R-Car leverages a heterogeneous architecture that features Arm® CPUs with multiple hardware accelerators. RoX includes a common set of toolchains that allows software reuse across electronic control units (ECUs) for ADAS, in-vehicle information (IVI) systems, and centralized data gateways. By enabling cloud-native development and customized design simulation, the RoX platform expands SDV lifecycle support through continuous updates that align with a modern value chain where OEMs and service providers increasingly co-own software.  Introducing RoX AI Studio: Cloud-Native MLOps on R-Car  Many of our automotive customers have embraced R-Car and the Renesas RoX platform as a means to accelerate SDV development and manage the complexity of in-vehicle embedded processing systems. In doing so, we found a persistent "lab-to-road" gap between how designers employ AI training in the cloud and how they deploy new features in automotive SoCs.  RoX AI Studio, a new extension of the original RoX platform, closes that gap. The machine learning operations (MLOps) tool lets teams remotely evaluate AI models using a managed cloud control plane that connects engineers with hardware-in-the-loop (HIL) device farms so they can profile real-world performance without waiting for scarce lab boards. Continuous integration and deployment (CI/CD) keeps the full toolchain current, so improvements arrive automatically with no local installs required. The result is faster iteration, fewer surprises, and a direct line from model training to road-ready, HIL model validation.  What Is MLOps – and How Does RoX AI Studio Enable It for SDVs?  To define MLOps, it's important to understand what preceded it. MLOps builds on a concept called DevOps – short for development operations – in which tools and best practices are combined to shorten software design lifecycles. This is achieved by breaking down silos between development and IT operations teams to help them collaborate more effectively.  DevOps governs deterministic integrate/test/deploy processes for conventional software code and services. MLOps adds AI data and models, where development lifecycles are iterative, experiments branch, and choices must be tracked, compared, and promoted. By anchoring model validation on R-Car silicon, RoX AI Studio becomes the bridge between model-in-training and model-in-production, turning the art and science of AI model development into repeatable and scalable engineering operations with targeted KPIs.  RoX AI Studio operationalizes automotive MLOps for SDVs in several ways:  Model Intake and Registry: Renesas provides a curated model zoo that includes many popular AI models. Users can also use a bring your own model (BYOM) approach to ingest their own custom or proprietary models and receive a quick performance evaluation on R-Car silicon.  Automated Updates: Orchestration workflows in our MLOps tool simplify the user experience by abstracting model processing for silicon deployment, while CI/CD toolchains automate the release and deployment of the latest version of the AI toolchain for R-Car SoCs.  HIL Evaluation: MLOps in the cloud connects to a physical lab hosting an array of R-Car silicon devices that run inference experiments on demand. This allows remote validation of AI models without requiring physical co-location with the hardware.  Results and Artifacts: Collects metrics and logs from inference experiments and aggregates them as metric comparison tables and plots.  Scaled Experimentation: Runs multiple models/variants in parallel to compare accuracy vs. latency under real-world operating constraints.  Flexible Deployment: Will allow designers to begin on the Renesas cloud for speed and then mirror the same stack later in a private cloud when silicon is more widely available for individual projects.  RoX AI Studio Is Advancing Automotive's "Shift Left" Strategy  Automotive timelines are compressing. Manufacturers are moving from three to four-year platform development cycles to one to two-year cycles augmented by ongoing over-the-air (OTA) updates to provide on-road product feature enhancements. That means design teams adopting the shift-left philosophy need to test hardware and software earlier using target (remote or virtual) devices.  That's a challenge for OEMs, many of which have invested heavily in AI model training and are striving to continuously improve their networks by deploying feature updates to their vehicles in the field. At the same time, shorter development cycles mean they must test many device options simultaneously – at scale and across multiple vectors – without over-investing in the wrong development path.  When OEMs and Tier 1 suppliers use RoX AI Studio, they can quickly validate their devices by testing at scale and within the context of their specific MLOps network strategy. RoX AI Studio makes this practical by creating a simplified developer experience for managing cloud-to-lab infrastructure and automated workflows for pre-trained model deployment and evaluation on R-Car SoC targets. It runs experiments in parallel, as opposed to serially, and provides access to device farms that allow global teams to start development before boards arrive and continue at scale.  For automotive OEMs, this means earlier starts and fewer late surprises, reusable software investments that move from cloud to vehicle, and a clean path to private-cloud deployment and virtual platforms that yield better results and shorten time to market.  Platform Thinking for the Software-Defined Era  Car makers designing SDVs are committed to developing hardware and software in parallel, and the market is converging on cloud-native machine learning tools – but with no universal MLOps winner yet.  Renesas RoX AI Studio provides a standardized SDV design foundation and operationalizes AI development on that foundation by moving beyond DevOps to support a "one-stop studio" model. Together, the RoX platform and RoX AI Studio are enabling a shift-left culture change: validate earlier, iterate faster, deploy confidently.  Renesas RoX AI Studio is currently available to select customers with a broad introduction planned in 2026.
Key word:
Release time:2025-12-31 17:27 reading:378 Continue reading>>
<span style='color:red'>Renesas</span> Fast-Tracks SDV Innovation with R-Car Gen 5 SoC-Based End-to-End Multi-Domain Solution Platform
  Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, is expanding its software-defined vehicle (SDV) solution offerings centered around the fifth-generation (Gen 5) R-Car family. The latest device in the Gen 5 family, the R-Car X5H is the industry’s first multi-domain automotive system-on-chip (SoC) manufactured with advanced 3nm process technology. It is capable of simultaneously running vehicle functions across advanced driver assistance systems (ADAS), in-vehicle infotainment (IVI), and gateway systems.  Renesas has begun sampling Gen 5 silicon and now offers full evaluation boards and the R-Car Open Access (RoX) Whitebox Software Development Kit (SDK) as part of the next phase of development. Renesas is also driving deeper collaboration with customers and partners to accelerate adoption. At CES 2026, Renesas will showcase AI-powered multi-domain demonstrations of the R-Car X5H in action.  The R-Car X5H leverages one of the most advanced process nodes in the industry to offer the highest level of integration, performance and power efficiency, with up to 35 percent lower power consumption than previous 5nm solutions. As AI becomes integral to next-generation SDVs, the SoC delivers powerful central compute targeting multiple automotive domains, with the flexibility to scale AI performance using chiplet extensions. It delivers up to 400 TOPS of AI performance, with chiplets boosting acceleration by four times or more. It also features 4 TFLOPS equivalent* of GPU power for high-end graphics and over 1,000k DMIPS powered by 32 Arm® Cortex®-A720AE CPU cores and six Cortex-R52 lockstep cores with ASIL D support. Leveraging mixed criticality technology, the SoC executes advanced features in multiple domains without compromising safety.  As hardware and software become more tightly integrated early in development to support complex E/E architectures, Renesas is adding new capabilities to the RoX development platform. RoX dramatically simplifies development by combining all essential hardware, operating systems, software and tools required to rapidly develop next-generation vehicles with seamless software updates.  Accelerating Automotive Innovation with an Open, Scalable RoX Whitebox SDK  To accelerate time-to-market, Renesas now offers the RoX Whitebox Software Development Kit (SDK) for the R-Car X5H, an open platform built on Linux, Android, and XEN hypervisor. Additional support for partner OS and solutions is available, including AUTOSAR, EB corbos Linux, QNX, Red Hat and SafeRTOS. Developers can jumpstart development out of the box using the SDK to build ADAS, L3/L4 autonomy, intelligent cockpit, and gateway systems. An integrated stack of AI and ADAS software enables real-time perception and sensor fusion while generative AI and Large Language Models (LLMs) enable intelligent human-machine interaction for next-generation AI cockpits. The SDK integrates production-grade application software stacks from leading partners such as Candera, DSP Concepts, Nullmax, Smart Eye, STRADVISION and ThunderSoft, supporting end-to-end development of modern automotive software architectures and faster time to market.  “Since introducing our most advanced R-Car device last year, we have been steadfast in developing market-ready solutions, including delivering silicon samples to customers earlier this year,” Vivek Bhan, Senior Vice President and General Manager of High Performance Computing at Renesas. “In collaboration with OEMs, Tier-1s and partners, we are rapidly rolling out a complete development system that powers the next generation of software-defined vehicles. These intelligent compute platforms deliver a smarter, safer and more connected driving experience and are built to scale with future AI mobility demands.”  “Integrating Renesas’ R-Car X5 generation series into our high-performance compute portfolio is a natural next step that builds on our existing collaboration,” said Christian Koepp, Senior Vice President Compute Performance at Bosch’s Cross-Domain Computing Solutions Division. “At CES 2026, we look forward to showcasing this powerful solution with Renesas X5H SoC, demonstrating its fusion capabilities across multiple vehicle domains, including video perception for advanced driver assistance systems."  “Innovative system-on-chip technology, such as Renesas’ R-Car X5H, is paving the way for ZF’s software-defined vehicle strategy,” said Dr. Christian Brenneke, Head of ZF’s Electronics & ADAS division. “Combining Renesas’ R-Car X5H with our ADAS software solutions enables us to offer full-stack ADAS capabilities with high computing power and scalability. The joint platform combines radar localization and HD mapping to provide accurate perception and positioning for reliable ADAS performance. At CES 2026, we’ll showcase our joint ADAS solution.”  First Fusion Demo on R-Car X5H with Partner Solutions at CES 2026  Renesas will showcase the capabilities of the R-Car X5H for the first time through a series of invitation-only demos at CES 2026. For more information about how to attend this event, contact sales at: CES26_Info@lm.renesas.com.  The new multi-domain demo upscales from R-Car Gen 4 to the next-generation R-Car X5H on the RoX platform, integrating ADAS and IVI stacks, RTOS, and edge AI functionality on Linux and Android with XEN hypervisor virtualization. Supporting input from eight high-resolution cameras and up to eight displays with resolutions reaching 8K2K, the platform delivers immersive visualization and robust sensor integration for next-generation SDVs. Combined with the RoX Whitebox SDK and production-grade partner software stacks, the platform is engineered for real-world deployment covering multiple automotive domains.  Availability  Renesas is shipping R-Car X5H silicon samples and evaluation boards, along with the RoX Whitebox SDK, to select customers and partners.
Key word:
Release time:2025-12-24 16:06 reading:479 Continue reading>>
<span style='color:red'>Renesas</span> Releases its First Wi-Fi 6 and Wi-Fi/Bluetooth LE Combo MCUs for IoT and Connected Home Applications
  Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, today introduced the RA6W1 dual-band Wi-Fi 6 wireless microcontroller (MCU), along with the RA6W2 MCU that integrates both Wi-Fi 6 and Bluetooth® Low Energy (LE) technologies. These connectivity devices address the growing demand for always-connected, ultra-low-power IoT devices across smart home, industrial, medical and consumer applications. Renesas also launched fully integrated modules that accelerate development with built-in antennas, wireless protocol stacks, and pre-validated RF connectivity.  Ultra Low Power Operation for Always-Connected IoT  Today’s IoT devices must stay always connected to improve application usability and response time, while maintaining the lowest possible power consumption to extend battery life or to meet eco-friendly regulations. Renesas’ Wi-Fi 6 MCUs offer features such as Target Wake Time (TWT), which enables extended sleep times without compromising cloud connectivity and power consumption. This is critical for applications such as environmental sensors, smart locks, thermostats, surveillance cameras, and medical monitors, where real-time control, remote diagnostics and over-the-air (OTA) updates are critical.  Additionally, both MCU Groups are optimized for ultra-low power consumption, consuming as little as 200nA to 4µA in sleep mode and under 50µA in Delivery Traffic Indication Message (DTIM10). With the “sleepy connected” Wi-Fi functionality, these devices stay connected with minimal power draw, meeting the growing requirements of modern energy efficiency standards.  Scalable RA MCU Architecture with Full Software Support  Built on the Arm® Cortex®-M33 CPU core running at 160 MHz with 704 KB of SRAM, the MCUs enable engineers to develop cost-effective, standalone IoT applications using integrated communication interfaces and analog peripherals, without the need for an external MCU. Customers also have the option to design with a host MCU that can be selected from Renesas’ broad RA MCU offerings and attach the RA6W1 and RA6W2 as connectivity and networking add-ons. Both RA6W1 and RA6W2 are designed to work with Renesas’ Flexible Software Package (FSP) and e² studio integrated development environment. As the first Wi-Fi MCUs in the RA portfolio, they offer a scalable platform that supports seamless software reuse across the RA family.  High Performance Dual-Band Wi-Fi 6 with 2.4 and 5 GHz Connectivity  With support for both 2.4 and 5 GHz bands, both MCUs deliver superior throughput, low latency, and reduced power consumption. The dual-band capability dynamically selects the most suitable band based on real-time conditions, ensuring a stable and high-speed connection even in environments with many connected devices. Advanced features such as Orthogonal Frequency Division Multiple Access (OFDMA) and TWT boost performance and energy efficiency, making these solutions well suited for dense urban environments and battery-powered devices.  Robust Security and Matter-Certified Interoperability  The RA6W1 and RA6W2 devices offer advanced built-in security including AES-256 encryption, secure boot, key storage, TRNG, and XiP with on-the-fly decryption to keep data safe from unauthorized access. The RA6W1 is RED certified (Radio Equipment Directive), which makes it easier for developers to future-proof their design. Additionally, the device is Matter ready and certified with Matter 1.4, and is compatible across smart home platforms. Renesas supports both MCUs and modules through the Renesas Product Longevity Program, offering 15-year support for MCUs and 10 years for modules.  “We’re offering our customers the flexibility to design with a standalone Wi-Fi device, a Wi-Fi/Bluetooth LE combo, or fully integrated modules depending on their needs,” said Chandana Pairla, VP of the Connectivity Solutions Division at Renesas. “These wireless solutions save power, simplify system design and lower BOM cost. With hosted or hostless implementation options, customers can confidently begin their wireless onboarding journey and seamlessly integrate into next-generation connected systems.”  Two types of modules, Wi-Fi 6 (RRQ61001) and Wi-Fi/Bluetooth LE combo (RRQ61051) simplify design by integrating certified RF components and wireless connectivity stacks that comply with global network standards. Supported RF certification standards include the U.S. (FCC), Canada (IC), Brazil (ANATEL), Europe (CE/RED), UK (UKCA), Japan (Telec), South Korea (KCC), China (SRRC) and Taiwan (NCC). By integrating connectivity at the system level, the modules significantly reduce design effort and accelerate time to market.  Winning Combinations  Renesas offers “Advanced Low-Power Wireless HMI for Household Appliances” and “Automatic Pet Door & Tracking System” that combine the new Wi-Fi 6 MCU and Wi-Fi/Bluetooth LE MCU with numerous compatible devices from its portfolio to offer a wide array of Winning Combinations. Winning Combinations are technically vetted system architectures from mutually compatible devices that work together seamlessly to bring an optimized, low-risk design for faster time to market. Renesas offers more than 400 Winning Combinations with a wide range of products from the Renesas portfolio to enable customers to speed up the design process and bring their products to market more quickly. They can be found at renesas.com/win.  Availability  The RA6W1 MCU is now available in FCQFN and WLCSP packages, along with the RRQ61001 and RRQ61051 modules. The RA6W2 MCU (BGA package) will be available in Q1/2026. The devices are supported by the FSP, e² studio, evaluation kit and software development kit (SDK) that include flash memory, PCB trace antennas, connectors and embedded power profiler for power consumption analysis. Renesas also offers comprehensive software tools to aid system application development, as well as the Production Line Tool (PLT) for production testing of wireless MCUs.
Key word:
Release time:2025-12-12 16:28 reading:651 Continue reading>>
<span style='color:red'>Renesas</span>’ Industry-First Gen6 DDR5 Registered Clock Driver Sets Performance Benchmark by Delivering 9600 MT/s
  Renesas Electronics Corporation (TSE: 6723), a premier supplier of advanced semiconductor solutions, today announced that it has delivered the industry’s first sixth-generation Registered Clock Driver (RCD) for DDR5 Registered Dual In-line Memory Modules (RDIMMs). The new RCD is the first to achieve a data rate of 9600 Mega Transfers Per Second (MT/s), surpassing the industry standard. This breakthrough marks a significant leap from the 8800 MT/s performance of Renesas’ Gen5 RCD, setting a new standard for memory interface performance in data center servers.  Key Features of Renesas’ Gen6 DDR5 RCD  10% Bandwidth Increase over Renesas’ Gen5 RCD (9600 MT/s versus 8800 MT/s)  Backward Compatibility with Gen5 Platforms: Provides seamless upgrade path  Enhanced Signal Integrity and Power Efficiency: Enables AI, HPC, and LLM workloads  Expanded Decision Feedback Equalization Architecture: Offers eight taps and 1.5mV granularity for superior margin tuning  Decision Engine Signal Telemetry and Margining (DESTM): Improved system-level diagnostics provides real-time signal quality indication, margin visibility, and diagnostic feedback for higher speeds  The new DDR5 RDIMMs are needed to keep pace with the ever-increasing memory bandwidth demands of Artificial Intelligence (AI), High-Performance Compute (HPC) and other data center applications. Renesas has been instrumental in the design, development and deployment of the new RDIMMs, collaborating with industry leaders including CPU and memory providers, along with end customers. Renesas is the leader in DDR5 RCDs, building on its legacy of signal integrity and power optimization expertise.  “Explosive growth of generative AI is fueling higher SoC core count. This is driving unprecedented demand for memory bandwidth and capacity as a critical enabler of data center performance,” said Sameer Kuppahalli, Vice President of Memory Interface Division at Renesas. “Our sixth generation DDR5 Registered Clock Driver demonstrates Renesas’ continued commitment to memory interface innovation, path-finding and delivering solutions to stay ahead of market demand.”  "Samsung has collaborated with Renesas across multiple generations of memory interface components, including the successful qualification of Gen5 DDR5 RCD and PMIC5030,” said Indong Kim, VP of DRAM Product Planning, Samsung Electronics. “We are now excited to integrate Gen6 RCD into our DDR5 DIMMs, across multiple SoC platforms to support the growing demands of AI, HPC, and other memory-intensive workloads."  Availability  The RRG5006x Gen6 RCD is designed to meet the stringent requirements of next-generation server platforms, offering robust performance, reliability, and scalability. Renesas is sampling the new RRG5006x RCD to select customers today, including all major DRAM suppliers. Production availability is expected in the first half of 2027.
Key word:
Release time:2025-11-13 16:33 reading:797 Continue reading>>
<span style='color:red'>Renesas</span> Adds Two New MCU Groups to Blazing Fast RA8 Series with 1GHz Performance and Embedded MRAM
  Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, today introduced the RA8M2 and RA8D2 microcontroller (MCU) groups. Based on a 1 GHz Arm® Cortex®-M85 processor with an optional 250 MHz Arm® Cortex®-M33 processor, the new MCUs are the latest Renesas offerings to deliver an unmatched 7300 Coremarks of raw compute performance, the industry benchmark for MCUs. The optional Cortex-M33 processor enables efficient system partitioning and task segregation.  Both RA8D2 and RA8M2 devices are ultra-high performance MCUs as part of the second generation of the RA8 Series – the RA8M2 are general-purpose devices, and the RA8D2 MCUs are packed with a variety of high-end graphics peripherals. They are built on the same high-speed, low-power 22-nm ULL process used for the RA8P1 and RA8T2 devices introduced earlier this year. The devices include single and dual core options, and a specialized feature set to address the needs of a broad base of compute intensive applications. They take advantage of the high performance of the Arm Cortex-M85 processor and Arm’s Helium™ technology to offer a significant performance boost for digital signal processor (DSP) and machine learning (ML) implementations.  The RA8M2 and RA8D2 devices offer embedded MRAM that has several advantages over Flash technology - high endurance & data retention, faster writes, no erase needed, and byte addressable with lower leakage and manufacturing costs. SIP options with 4 or 8 MB of external flash in a single package are also available for more demanding applications. Both the RA8M2 and RA8D2 MCUs include Gigabit Ethernet interfaces and a 2-port TSN switch to address industrial networking use cases.  Both of the MCU Groups provide a combination of the high performance of the Cortex-M85 core, together with large memory and a rich peripheral set, making them particularly suitable for a wide range of IoT and industrial use cases. The lower power CM33 core can act as a housekeeping MCU, executing system tasks while the high performance CM85 core stays in sleep mode, to be woken up only as needed for high compute tasks, thus lowering the system power consumption.  “The RA8M2 and RA8D2 complete Renesas’ new generation of RA8 MCUs, purpose-built for the high-performance microcontroller market,” said Daryl Khoo, Vice President of the Embedded Processing Marketing Division at Renesas. “This portfolio empowers Renesas to deliver scalable, secure and AI-enabled embedded processing solutions that accelerate customer innovation and time-to-market across a broad spectrum of industrial, IoT and select automotive applications. Renesas’ commitment to innovation is reflected in the RA8 Series’ ability to address complex processing requirements while maintaining lower power consumption and minimizing total cost of ownership to future-proof customers’ designs.”  RA8D2 Feature Set Optimized for Graphics and HMI Applications  The RA8D2 MCUs provide a plethora of features and functions for graphics and HMI applications:  High resolution Graphics LCD Controller supports up to 1280x800 displays with both parallel RGB and 2-lane MIPI DSI interfaces  Two-Dimensional Drawing Engine offloads the graphics rendering tasks from the CPU and supports graphics primitives  Multiple camera interface options enable camera and vision AI applications,  16-bit camera interface (CEU) with support for image data fetch, processing and format conversion  MIPI CSI-2 interface offers a low pin-count interface with 2 lanes, each up to 720Mbps  A VIN module performs vertical and horizontal scaling and format and color space conversions of YUV and RGB data inputs received from the MIPI CSI-2 interface  Audio interfaces such as I2S and PDM support digital microphone inputs for audio and voice AI applications  Comprehensive graphics solution with industry-leading embedded graphics GUI packages from SEGGER emWin and Microsoft GUIX, integrated into Renesas’ FSP  Software JPEG decoder optimized for Helium, available with both emWin and GUIX solutions, allows decode of JPEG images with up to 27fps end-to-end graphics performance with Helium acceleration  Multiple graphics ecosystem partners such as Embedded Wizard, Envox, LVGL and SquareLine Studio are offering solutions that employ RA8D2 using Helium to accelerate graphics functions and JPEG decoding  Key Features of the RA8M2 and RA8D2 Group MCUs  Core: 1 GHz Arm Cortex-M85 with Helium; Optional 250 MHz Arm Cortex-M33  Memory: Integrated 1MB high-speed MRAM and 2MB SRAM (including 256KB TCM for the Cortex-M85 and 128KB TCM for the M33). 4MB and 8MB SIP devices coming soon.  Analog Peripherals: Two 16-bit ADC with 23 analog channels, two 3-channel S/H, 2-channel 12-bit DAC, 4-channel high-speed comparators  Communications Peripherals: Dual Gigabit Ethernet MAC with DMA, USB2.0 FS Host/Device/OTG, CAN2.0 (1Mbps)/CAN FD (8Mbps), I3C (12.5Mbps), I2C (1Mbps), SPI, SCI, Octal serial peripheral I/F  Advanced Security: RSIP-E50D Cryptographic engine, robust secure boot with FSBL in immutable storage on-chip, secure debug, secure factory programming, DLM support, tamper protection, DPA/SPA protection,  The new RA8M2 and RA8D2 Group MCUs are supported by Renesas’ Flexible Software Package (FSP). The FSP enables faster application development by providing all the infrastructure software needed, including multiple RTOS, BSP, peripheral drivers, middleware, connectivity, networking, and security stacks as well as reference software to build complex AI, motor control and cloud solutions. It allows customers to integrate their own legacy code and choice of RTOS (FreeRTOS and Azure RTOS) with FSP, thus providing full flexibility in application development. In addition, Zephyr support is now included. Using the FSP will ease migration of existing designs to the new RA8 Series devices.  Winning Combinations  Renesas has combined the new RA8 Group MCUs with numerous compatible devices from its portfolio to offer a wide array of Winning Combinations, including the Smart Glasses and Pet Camera Robot for the RA8M2, and both Ki Wireless Power Transceiver System (Tx) and Ki Wireless Power Receiver System (Rx) for the RA8D2. Winning Combinations are technically vetted system architectures from mutually compatible devices that work together seamlessly to bring an optimized, low-risk design for faster time to market. Renesas offers more than 400 Winning Combinations with a wide range of products from the Renesas portfolio to enable customers to speed up the design process and bring their products to market more quickly.   Availability  The RA8M2 and RA8D2 Group MCUs are available now, along with the FSP software. The RA8M2 devices are available in 176-pin LQFP, 224-pin and 289-pin BGA packages. The RTK7EKA8M2S00001BE Evaluation Kit is also available. The RA8D2 MCUs are offered in 224-pin and 289-pin BGA packages. The RTK7EKA8D2S01001BE Evaluation Kit supports the RA8D2 devices.
Key word:
Release time:2025-10-30 15:45 reading:906 Continue reading>>
<span style='color:red'>Renesas</span> Powers 800 Volt Direct Current AI Data Center Architecture with Next-Generation Power Semiconductors
  Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, announced that it is supporting efficient power conversion and distribution for the 800 Volt Direct Current power architecture announced by NVIDIA, helping fuel the next wave of smarter, faster AI infrastructure.  As GPU-driven AI workloads intensify and data center power consumption scales into multi-hundred megawatt territory, modern data centers must adopt power architectures that are both energy optimized and scalable. Wide bandgap semiconductors such as GaN FET switches are quickly emerging as a key solution thanks to their faster switching, lower energy losses, and superior thermal management. Moreover, GaN power devices will enable the development of 800V direct current buses within racks to significantly reduce distribution losses and the need for large bus bars, while still supporting reuse of 48V components via DC/DC step-down converters.  Renesas’ GaN based power solutions are especially suited for the task, supporting efficient and dense DC/DC power conversion with operating voltages of 48V to as high as 400V, with the option to stack up to 800V. Based on the LLC Direct Current Transformer (LLC DCX) topology, these converters achieve up to 98 percent efficiency. For the AC/DC front-end, Renesas uses bi-directional GaN switches to simplify rectifier designs and increase power density. Renesas REXFET MOSFETs, drivers and controllers complement the BOM of the new DC/DC converters.   “AI is transforming industries at an unprecedented pace, and the power infrastructure must evolve just as quickly to meet the explosive power demands,” said Zaher Baidas, Senior Vice President and General Manager of Power at Renesas. “Renesas is helping power the future of AI with high-density energy solutions built for scale, supported by our full portfolio of GaN FETs, MOSFETs, controllers and drivers. These innovations will deliver performance and efficiency, with the scalability required for future growth.”  Renesas Power Management Leadership  A world leader in power management ICs, Renesas ships more than 1.5 billion units per year, with increased shipments serving the computing industry, and the remainder supporting industrial and Internet of Things applications as well as data center and communications infrastructure. Renesas has the broadest portfolio of power management devices, delivering unmatched quality and efficiency with exceptional battery life. As a trusted supplier, Renesas has decades of experience designing power management ICs, backed by a dual-source production model, the industry’s most advanced process technology, and a vast network of more than 250 ecosystem partners.  About Renesas Electronics Corporation  Renesas Electronics Corporation (TSE: 6723) empowers a safer, smarter and more sustainable future where technology helps make our lives easier. A leading global provider of microcontrollers, Renesas combines our expertise in embedded processing, analog, power and connectivity to deliver complete semiconductor solutions. These Winning Combinations accelerate time to market for automotive, industrial, infrastructure and IoT applications, enabling billions of connected, intelligent devices that enhance the way people work and live. 
Key word:
Release time:2025-10-13 13:29 reading:920 Continue reading>>
<span style='color:red'>Renesas</span> Adds Capacitive Touch to Ultra-Low-Power RA0 MCUs
  Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, today introduced the RA0L1 microcontroller (MCU) Group based on the Arm® Cortex®-M23 processor. The new devices offer extremely low power consumption and the industry’s best solution for quickly and economically implementing capacitive touch in battery-powered and other consumer electronics, appliances, white goods and industrial system controls.  Renesas introduced the RA0 MCU series in 2024 and it has quickly become very popular with a wide range of customers due to its affordability and low power consumption. With the addition of capacitive touch functionality, RA0L1 devices offer designers the ability to create responsive, attractive, low-power user interfaces at very low cost.  RA0L1 MCUs deliver industry-leading power consumption of only 2.9mA current in active mode, and 0.92mA in sleep mode. In addition, an integrated High-speed On-Chip Oscillator (HOCO) enables the fastest wake-up time for this class of microcontroller. The fast wake-up enables the RA0L1 MCUs to stay in Software Standby mode more of the time, where power consumption drops to a minuscule 0.25 µA. With this feature, current consumption can be reduced by up to 90 percent compared with other solutions.  Feature Set Optimized for Low Cost  The RA0L1 devices have a feature set optimized for cost-sensitive applications. They offer a wide operating voltage range of 1.6V to 5.5V so customers don’t need a level shifter/regulator in 5V systems. The RA0L1 MCUs also integrate multiple communications interfaces, analog functions, safety functions and security functionality to reduce customer BOM cost. A wide range of packaging options is also available, including a tiny 4mm x 4mm 24-pin QFN.  In addition, the new MCU’s high-precision (±1.0%) HOCO improves baud rate accuracy and enables designers to forego a standalone oscillator. Unlike other HOCOs in the industry, it maintains this precision in environments from -40°C to 125°C. This wide temperature range enables customers to simplify thermal design by avoiding costly and time-consuming “trimming,” even after the reflow process.  Renesas Capacitive Touch Leadership  Renesas provides industry-leading capacitive touch technology, ensuring customers can quickly and cost-effectively implement high-quality touch interfaces in a variety of systems. Its self-capacitance method simplifies waterproof design, offering simpler design and reduced complexity compared to mutual capacitance solutions. Renesas’ multi-frequency measurement meets IEC61000 4-3 Level 4 standards, making it ideal for medical applications that demand robust protection from electromagnetic interference. Renesas also offers specialized development resources for capacitive touch, including the QE for Capacitive Touch that streamlines sensitivity adjustments for capacitive touch buttons, speeding up development.  “The RA0L1 combines the industry-leading power consumption and cost-effectiveness of our RA0 Series MCUs with our unmatched capacitive touch technology and tools,” said Daryl Khoo, Vice President of the Embedded Processing Marketing Division at Renesas. “We look forward to the many innovative touch interface solutions that our customers will create using these devices.”  Key Features of the RA0L1 Group MCUs  Core: 32MHz Arm Cortex-M23  Memory: Up to 64KB integrated Code Flash memory and 16KB SRAM  Extended Temperature Range: Ta -40°C to 125°C  Timers: Timer array unit (16b x 8 channels), 32-bit interval timer (8b x 4 channels), RTC  Communications Peripherals: 3 UARTs, 2 Async UART, 6 Simplified SPIs, 2 I2C, 6 Simplified I2Cs  Analog Peripherals: 12-bit ADC, temperature sensor, internal reference voltage  HMI: Capacitive Touch (up to 24 channels), Controlled Current Drive Port (up to 8)  Safety: SRAM parity check, invalid memory access detection, frequency detection, A/D test, output level detection, CRC calculator, register write protection  Security: Unique ID, TRNG, Flash access window, Flash read protection  Packages: 24-, 32- and 48-pin QFNs, 32-, 48-pin LQFP, 20-pin LSSOP  The new RA0L1 Group MCUs are supported by Renesas’ Flexible Software Package (FSP). The FSP enables faster application development by providing all the infrastructure software needed, including multiple RTOS, BSP, peripheral drivers, middleware, connectivity, networking, and security stacks as well as reference software to build complex AI, motor control and cloud solutions. It allows customers to integrate their own legacy code and choice of RTOS with FSP, thus providing full flexibility in application development. Using the FSP will ease migration to and from other RA family devices.  Winning Combinations  Renesas has combined the new RA0L1 Group MCUs with numerous compatible devices from its portfolio to offer a wide array of Winning Combinations, including the Capacitive Touch Remote Controller. Winning Combinations are technically vetted system architectures from mutually compatible devices that work together seamlessly to bring an optimized, low-risk design for faster time to market. Renesas offers more than 400 Winning Combinations with a wide range of products from the Renesas portfolio to enable customers to speed up the design process and bring their products to market more quickly.  Availability  The RA0L1 Group MCUs are available now, along with the FSP software, the RA0L1 Fast Prototyping Board and the RA0L1 Renesas Solution Starter Kit for Cap Touch. Samples and kits can be ordered either on the Renesas website or through AMEYA360.
Key word:
Release time:2025-09-18 16:11 reading:1026 Continue reading>>
<span style='color:red'>Renesas</span> Introduces Ultra-Low-Power RL78/L23 MCUs for Next-Generation Smart Home Appliances
  Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, today introduced the new 16-bit RL78/L23 microcontroller (MCU) group, expanding its low-power RL78 family. Running at 32MHz, the RL78/L23 MCUs combine industry-leading low-power performance with essential features such as dual-bank flash memory, segment LCD control, and capacitive touch functionality to support smart home appliances, consumer electronics, IoT and metering systems. These compact, cost-effective devices address the performance and power requirements of modern display-based human-machine interface (HMI) applications.  Ultra-Low Power Operation with Optimized LCD Performance  The RL78/L23 is optimized for ultra-low power consumption and ideal for battery-powered applications that spend the majority of time in standby. They offer an active current of just 109μA/MHz and a standby current as low as 0.365μA, along with a fast 1μs wake-up time to help minimize CPU activity. The LCD controller’s new reference mode, VL4, reduces LCD operating current by approximately 30 percent when compared to the existing RL78/L1X group. The MCUs come with SMS (SNOOZE Mode Sequencer), which enables dynamic LCD segment display without CPU intervention. By offloading tasks to the SMS, the devices minimize CPU wake-ups and contribute to system-level power savings. These innovations significantly extend battery life, simplify design and reduce replacement costs, while minimizing environmental impact.  The RL78/L23 offers a wide operating voltage range of 1.6V to 5.5V, which supports direct operation from 5V power supplies commonly used in home appliances and industrial systems. This capability reduces the need for external voltage regulators. The MCUs also integrate key components such as capacitive touch sensing, a temperature sensor, and internal oscillator, reducing BOM cost and PCB size.  Feature-Rich Peripherals for HMI Systems  Designed to meet the dynamic requirements of the HMI market, RL78/L23 integrates a suite of advanced features in a compact, cost-effective package. Its built-in segment LCD controller and capacitive touch realize sleek, responsive user interfaces for products such as induction cooktops and HVAC systems. The IH timer (Timer KB40) enables precise multi-channel heat control, which is essential in smart kitchen appliances such as rice cookers and IH cooktops. The devices include dual-bank flash memory for seamless firmware updates via FOTA (Firmware Over-the-Air), allowing continuous system operation in applications like metering, where downtime must be minimized. The dual-bank architecture allows one memory bank to run the user program, while the other receives updates. This approach keeps the system functional throughout the process for improved reliability.  “The Renesas RL78 Family of 16-bit microcontrollers has been one of the most successful products since its launch more than 10 years ago, particularly in home appliances,” said Daryl Khoo, Vice President of Embedded Processing at Renesas. “I’m pleased to announce the RL78/L23, a new generation of RL78 microcontrollers with rich features, ideally suited for smart home appliances and cost-sensitive IoT solutions. With these devices, we aim to provide a better user experience with our intuitive development environment so that customers can get to production faster with confidence, based on market-proven Renesas technologies.”  Key Features of the RL78/L23  16-bit RL78 microcontroller running at 32MHz  Built-in segment LCD controller and capacitive touch  Up to 512KB of dual-bank flash memory for seamless FOTA  Up to 32KB of SRAM and 8KB of data flash  SMS for ultra-low power operation  IH Timer (KB40) supporting up to 3-channel induction heating control  Wide operating voltage range from 1.6V to 5.5V  Operating temperature range of -40°C to +105°C  Multiple serial interfaces including UART, I2C, CSI  IEC60730-compliant self-test library  44-100-pin LFQFP, LQFP and HWQFN packages  Intuitive Development Environment for Faster Time-to-Market  The RL78/L23 comes with an easy-to-use development environment. Developers can leverage robust support tools such as Smart Configurator and QE for Capacitive Touch to streamline system design. Renesas offers the RL78/L23 Fast Prototyping Board which is compatible with Arduino IDE, and a capacitive touch evaluation system for in-depth testing and validation.  Winning Combinations  Renesas offers Induction Heating Rice Cooker Solution which combines the new RL78/L23 devices with numerous compatible devices from its portfolio to offer a wide array of Winning Combinations. Winning Combinations are technically vetted system architectures from mutually compatible devices that work together seamlessly to bring an optimized, low-risk design for faster time to market. Renesas offers more than 400 Winning Combinations with a wide range of products from the Renesas portfolio to enable customers to speed up the design process and bring their products to market more quickly. They can be found at renesas.com/win.  Availability  The RL78/L23 MCUs are available today, along with the Fast Prototyping Board (FPB-RL78L23) and the capacitive touch evaluation system (RSSK-RL78L23). 
Key word:
Release time:2025-08-27 15:18 reading:1079 Continue reading>>
<span style='color:red'>Renesas</span> Expands MCU/MPU Portfolio to Meet New Processing Needs of Edge AI
  Artificial intelligence at the IoT edge is redefining how connected devices capture, process, and analyze data to render actionable outcomes in a variety of consumer and industrial applications. Unlike AI cloud servers, where power, data latency, and security management are prime design considerations, AIoT moves intelligence closer to the data source to enable real-time, in-situ decision-making with enhanced privacy and lower energy use.  Despite its promise, AI at the IoT edge carries significant engineering challenges. Traditional AI models are computationally intensive. They require large amounts of memory and power, which resource-constrained IoT devices, often battery-operated with limited processing capacity, cannot easily support. Instead, designers need highly optimized, lightweight neural network models that run efficiently on microcontrollers, microprocessors, and other low-power hardware without sacrificing performance or accuracy.  Managing AIoT Processing with TinyML Models  Because it is inherently decentralized, AIoT reduces dependency on cloud servers while instantly acting upon real-time analytics and boosting security by keeping data local. This makes the process of outfitting factory equipment with predictive maintenance easier by embedding machine learning (ML) models within local sensors to detect anomalies or faults without waiting for cloud analysis. Smart home devices with AI-enhanced voice interfaces can perform instant keyword recognition and natural language understanding without sending sensitive audio data over the network.  Similar to a trend underway in AI data centers, AIoT at the edge is also evolving to handle the proliferation of inference modeling. If data is the fuel for intelligent, real-time decision making, then AI inference is the engine that processes pre-trained ML models directly on edge devices.  Data center AI inference modeling has a unique set of computational requirements best served by powerful parallel processors that can train large language models (LLMs) models that may have billions of parameters. On the other end of the spectrum, edge AIoT technologies like TinyML minimize memory requirements and computing overhead, making real-time analytics feasible for battery-powered IoT endpoints. Moreover, TinyML inference modeling enables multi-modal applications, combining voice, vision, and sensor data for advanced use cases like environmental monitoring and autonomous navigation.  Real-time data processing is another function complicated by the memory limitations, modest energy budgets, and thermal constraints of edge AIoT. Many consumer and industrial applications, such as smart home voice recognition and autonomous sensors, demand ultra-low latency responses. Cloud-based AI struggles to meet these requirements due to network delays, making on-device inference essential. Engineers must also ensure data security and privacy by embedding strong encryption and root-of-trust mechanisms directly at the endpoint.  Tools like TinyML are critical for overcoming these barriers and enabling compact machine learning models that operate efficiently on IoT hardware while extending battery life.  Renesas Optimizes New MCUs and MPUs for Edge AIoT  To better serve edge AIoT applications, Renesas recently expanded its processor portfolio, introducing new high-performance, low-power MCUs and MPUs with integrated neural processing units (NPUs) purpose-built for AI computing.  The 32-bit Renesas RA8P1 MCU is designed for voice and vision edge AI applications and features dual Arm® cores, the 1GHz Cortex®-M85 and 250MHz Cortex-M33, and an Arm Ethos™-U55 NPU that delivers up to 256GOPS of AI performance. For security, the new MCU supports the Arm TrustZone® secure execution environment, hardware root-of-trust, secure boot, and advanced cryptographic engines, ensuring safe deployment in critical edge applications.  Renesas also introduced the 64-bit RZ/G3E MPU for high-performance edge AIoT and human machine interfaces, combining a quad-core Arm Cortex-A55 CPU, Cortex-M33, and advanced graphics. The RZ/G3E embeds an Arm Ethos-U55 NPU to offload the main CPU by delivering up to 512GOPS of AI performance for image classification, voice recognition, and anomaly detection.  Arm NPUs Right-Size Power and Performance for AIoT Applications  The Arm Ethos-U55 NPU supports popular neural network models like ResNet, DS-CNN, and MobileNet with up to 35x faster inference compared to CPU-only processing. Unlike GPUs that burn tens to hundreds of watts on high-throughput, parallel computing, the Ethos-U55 delivers hardware-accelerated inference at milliwatt-level power, making it ideal for IoT edge devices.  The Arm NPU supports compressed and quantized neural networks, reducing memory and compute overhead to allow for real-time, localized AI processing. In contrast, GPUs excel at training large models but are impractical for edge deployments due to size, cost, and energy use.  Integrated RUHMI Framework and e² studio Streamline AI Edge Development  The new MCU and MPU are both supported by the Renesas e² studio integrated development environment and incorporate Renesas' RUHMI Framework to accelerate edge AIoT design. RUHMI (Robust Unified Heterogeneous Model Integration) is an end-to-end toolset and Renesas' first comprehensive MCU/MPU framework for simplifying AI workloads on resource-constrained devices. RUHMI supports leading ML formats like TensorFlow™ Lite, PyTorch®, and ONNX, enabling developers to import and optimize pre-trained models for high-performance, low-power edge AI deployments.  The RUHMI framework is enhanced by Renesas' e² studio, which provides intuitive tools, sample applications, and debugging features. When used together, they help developers more easily handle pre-processing of image and audio data, execute inference on the NPU, and post-process results within a unified environment.  Edge AIoT Relies on Processors with Low Power and High Compute Density  Grand View Research reports that the global edge AI market recorded sales of more than $20 billion in 2024, on its way to nearly $66.5 billion by 2030, driven by demand for real-time data processing and analysis at the network edge.  Increasingly, MCUs and MPUs are the preferred choice for edge AIoT vision and voice applications due to low power consumption, localized processing, and cost efficiency. Unlike GPUs, which require cloud connectivity and high power, MCUs and MPUs can process data directly at the endpoint, enabling real-time inference and decision-making without network delays. By keeping sensitive data on-device, these processors also enhance security and privacy, eliminating the need for constant cloud communication.  This combination of speed, energy efficiency, and data security makes MCUs and MPUs ideal for wearables, smart homes, and industrial edge AI systems.  Future Efforts Will Prioritize HD Vision, Security, and a Robust IoT Supply Chain  As we right-size support for our processor ecosystem using highly efficient TinyML models, Renesas is also developing MPUs for Vision Transformer (ViT) networks. This form of deep learning applies Transformer models originally designed for natural language processing to computer vision, but unlike power-hungry GPUs, ViTs process high-resolution images and videos without the need for cooling fans.  Renesas is also creating zero-touch security solutions such as post-quantum cryptography (PQC), which secures against attacks from both classic and quantum computers to better defend against a widening range of cyber threats.  As we foster AI-accelerated hardware, software, and tool chain development, Renesas remains committed to supporting legacy (non-AI) products and the open-source software environment that powers much of today's IoT systems. By collaborating with our partner ecosystem to keep abreast of the rapidly changing IoT landscape, we can better help our customers design sustainable, smart, secure, and connected systems safely and reliably.
Key word:
Release time:2025-08-25 14:59 reading:1248 Continue reading>>
New <span style='color:red'>Renesas</span> USB-C Power Solution with Innovative Three-Level Topology Improves Performance and Reduces System Size
  Renesas Electronics Corporation (TSE:6723), a premier supplier of advanced semiconductor solutions, today introduced the RAA489300/RAA489301 high-performance buck controller designed with a three-level buck topology used for battery charging and voltage regulation in USB-C systems such as multiple-port USB-PD chargers, portable power stations, PC docking station, robots, drones, and other applications that need a high efficiency DC/DC controller.  The three-level buck converter topology enabled by the new IC delivers exceptional efficiency and significantly reduces the required inductance for regulating the output voltage. Its innovative design minimizes power loss and reduces system size, making it ideal for compact, high-performance applications.  The three-level topology consists of two additional switches and a flying capacitor compared to a conventional two-level buck converter. The flying capacitor reduces voltage stress on the switches, allowing designers to use lower voltage FETs with better figures of merit. The result is reduced conduction and switching losses. This topology also enables the use of a smaller inductor with peak-to-peak ripple of only about 25 percent of that of a two-level converter, enabling reduced inductor core and direct current resistance losses.  Renesas is a worldwide leader in USB-PD solutions, offering a comprehensive range of products, including turnkey solutions for various applications. Renesas helps customers shorten their time-to-market with an extensive development environment and pre-certified USB-IF reference designs. Renesas USB-PD solutions offer superior quality and safety, along with high efficiency and power density.  “This three-level buck topology solution is a prime example of Renesas’ worldwide leadership in battery charging,” said Gaurang Shah, Vice President of the Power Division at Renesas. “The innovative technology includes patent-pending breakthroughs that offer our customers clear advantages over competing USB-C power offerings.”  The 3-Level DC-DC RAA489300/RAA489301 battery charger and voltage regulator offers superior thermal performance, which reduces cooling requirements and results in cost and space savings. This innovative approach addresses the growing demand for compact and efficient power management systems.  Key Features of the RAA489300/RAA489301 battery charger and voltage regulator  Wide range of input and output voltages for use in voltage battery packs and with various PD adapters  Integrated safety features with built-in protection mechanisms against overcharging, overheating, and voltage anomalies  Scalability for easily adapting to various power levels and application requirements  Optimized switching architecture divides the voltage across power switches, improving efficiency  Minimizes power consumption, contributing to greener, more sustainable designs  Lower thermal stress improves system reliability and extends product lifespan  Winning Combinations  Renesas offers the RTK-251-SinkCharger-240W and the 240W Dual-Port Daughter Card Winning Combinations that minimize the effort required for customers to design USB-C battery charging into their products. Winning Combinations are technically vetted system architectures from mutually compatible devices that work together seamlessly to bring an optimized, low-risk design for faster time to market. Renesas offers more than 400 Winning Combinations with a wide range of products from the Renesas portfolio to enable customers to speed up the design process and bring their products to market more quickly.   Device Availability  The RAA489300/RAA489301 is available today in a 4×4 mm 32-lead TQFN package. Comprehensive design support and tools, including the RTK-251-SinkCharger-240W Kit and the RTKA489300DE0000BU Evaluation Board, are also available.
Key word:
Release time:2025-08-20 11:46 reading:1197 Continue reading>>

Turn to

/ 9

  • Week of hot material
  • Material in short supply seckilling
model brand Quote
MC33074DR2G onsemi
BD71847AMWV-E2 ROHM Semiconductor
RB751G-40T2R ROHM Semiconductor
CDZVT2R20B ROHM Semiconductor
TL431ACLPR Texas Instruments
model brand To snap up
STM32F429IGT6 STMicroelectronics
BU33JA2MNVX-CTL ROHM Semiconductor
TPS63050YFFR Texas Instruments
IPZ40N04S5L4R8ATMA1 Infineon Technologies
ESR03EZPJ151 ROHM Semiconductor
BP3621 ROHM Semiconductor
Hot labels
ROHM
IC
Averlogic
Intel
Samsung
IoT
AI
Sensor
Chip
About us

Qr code of ameya360 official account

Identify TWO-DIMENSIONAL code, you can pay attention to

AMEYA360 mall (www.ameya360.com) was launched in 2011. Now there are more than 3,500 high-quality suppliers, including 6 million product model data, and more than 1 million component stocks for purchase. Products cover MCU+ memory + power chip +IGBT+MOS tube + op amp + RF Bluetooth + sensor + resistor capacitance inductor + connector and other fields. main business of platform covers spot sales of electronic components, BOM distribution and product supporting materials, providing one-stop purchasing and sales services for our customers.

Please enter the verification code in the image below:

verification code